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ABSTRACT

Data sparsity, scalability and prediction quality have been
recognized as the three most crucial challenges that every
collaborative filtering algorithm or recommender system con-
fronts. Many existing approaches to recommender systems
can neither handle very large datasets nor easily deal with
users who have made very few ratings or even none at all.
Moreover, traditional recommender systems assume that all
the users are independent and identically distributed; this
assumption ignores the social interactions or connections
among users. In view of the exponential growth of infor-
mation generated by online social networks, social network
analysis is becoming important for many Web applications.
Following the intuition that a person’s social network will
affect personal behaviors on the Web, this paper proposes a
factor analysis approach based on probabilistic matrix fac-
torization to solve the data sparsity and poor prediction ac-
curacy problems by employing both users’ social network
information and rating records. The complexity analysis
indicates that our approach can be applied to very large
datasets since it scales linearly with the number of observa-
tions, while the experimental results shows that our method
performs much better than the state-of-the-art approaches,
especially in the circumstance that users have made few or
no ratings.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
filtering; J.4 [Computer Applications]: Social and Be-
havioral Sciences

General Terms
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1. INTRODUCTION

Recommender Systems attempt to suggest items (movies,
books, music, news, Web pages, images, etc.) that are likely
to interest the users. Typically, recommender systems are
based on Collaborative Filtering, which is a technique that
automatically predicts the interest of an active user by col-
lecting rating information from other similar users or items.
The underlying assumption of collaborative filtering is that
the active user will prefer those items which the similar users
prefer [13]. Based on this simple but effective intuition, col-
laborative filtering has been widely employed in some large,
famous commercial systems, such as Amazon'. However,
due to the nature of collaborative filtering, recommender
systems based on this technique suffer from the following in-
herent weaknesses: (1) Due to the sparsity of the user-item
rating matrix (the density of available ratings in commercial
recommender systems is often less than 1% [19]), memory-
based [10, 12, 13, 24] collaborative filtering algorithms fail
to find similar users, since the methods of computing simi-
larities, such as the Pearson Correlation Coefficient (PCC)
or the Cosine method, assume that two users have rated
at least some items in common. Moreover, almost all of
the memory-based and model-based [8, 9, 18, 20] collabora-
tive filtering algorithms cannot handle users who have never
rated any items. (2) In reality, we always turn to friends we
trust for movie, music or book recommendations, and our
tastes and characters can be easily affected by the company
we keep. Hence, traditional recommender systems, which
purely mine the user-item rating matrix for recommenda-
tions, give somewhat unrealistic output.

Traditional recommender systems assume that users are
i.5.d. (independent and identically distributed); this assump-
tion ignores the social interactions or connections among
users. But the fact is, offline, social recommendation is an
everyday occurrence. For example, when you ask a friend
for a recommendation of a movie to see or a good restaurant,
you are essentially soliciting a verbal social recommendation.
Sinha et al. in [22] have shown that, given a choice between
recommendations from friends and those from recommender
systems, in terms of quality and usefulness, friends’ recom-
mendations are preferred, even though the recommendations
given by the recommender systems have high novelty factor.
Friends are seen as more qualified to make good and use-
ful recommendations compared to traditional recommender
systems [1]. From this point of view, the traditional recom-
mender systems that ignore the social network structure of
users may no longer be suitable.

"http://www.amazon.com



In the most recent research work conducted in [21], by
analyzing the who talks to whom social network on the
MSN instant messenger? over 10 million people with their
related search records on the Live Search Engine®, P. Singla
and M. Richardson revealed that people who chat with each
other (using instant messaging) are more likely to share in-
terests (their Web searches are the same or topically simi-
lar). Therefore, to improve the recommendation accuracy,
in modern recommender systems, both social network struc-
ture and user-item rating matrix should be taken into con-
sideration.

In order to overcome the weaknesses mentioned above,
based on the intuition that a user’s social network will af-
fect her/his personal behaviors on the Web, we propose to
fuse a user’s social network graph with the user-item rat-
ing matrix in order to make more accurate and personalized
recommendations, which is called Social Recommendation.
Actually, the method we develop is applicable not only to
social recommendation, but also to social search and many
other tasks in information retrieval and data mining.

To achieve this goal, this paper proposes a method in-
tegrating social network structure and the user-item rating
matrix, based on probabilistic factor analysis. We connect
these two different data resources through the shared user
latent feature space, that is, the user latent feature space in
the social network structure is the same in the user-item rat-
ing matrix. By performing factor analysis based on proba-
bilistic matrix factorization, the low-rank user latent feature
space and item latent feature space are learned in order to
make social recommendations. The experimental results on
the Epinions® dataset shows that our method outperforms
the state-of-the-art collaborative filtering algorithms, espe-
cially when active users have very few ratings or even none
at all. Moreover, the complexity analysis indicates that our
approach can be applied to very large datasets since it scales
linearly with the number of observations.

The remainder of this paper is organized as follows. In
Section 2, we provide an overview of several major approaches
for recommender systems and some related work. Section 3
presents our work on social recommendation. The results of
an empirical analysis are presented in Section 4, followed by
the conclusions and future work in Section 5.

2. RELATED WORK

In this section, we review several major approaches for
recommender systems, especially for collaborative filtering.
Two types of collaborative filtering approaches are widely
studied: memory-based and model-based.

The memory-based approaches are the most popular pre-
diction methods and are widely adopted in commercial col-
laborative filtering systems [12, 16]. The most analyzed ex-
amples of memory-based collaborative filtering include user-
based approaches [2, 7, 10, 25] and item-based approaches [4,
12, 19]. User-based approaches predict the ratings of active
users based on the ratings of similar users found, and item-
based approaches predict the ratings of active users based on
the computed information of items similar to those chosen
by the active user. User-based and item-based approaches
often use the PCC algorithm [16] and the VSS algorithm [2]

Zhttp://www.msn.com
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as the similarity computation methods. PCC-based collab-
orative filtering generally can achieve higher performance
than the other popular algorithm VSS, since it considers
the differences of user rating style.

In the model-based approaches, training datasets are used
to train a predefined model. Examples of model-based ap-
proaches include the clustering model [25], aspect models [8,
9, 20] and the latent factor model [3]. [11] presented an algo-
rithm for collaborative filtering based on hierarchical clus-
tering, which tried to balance robustness and accuracy of
predictions, especially when few data were available. [8] pro-
posed an algorithm based on a generalization of probabilistic
latent semantic analysis to continuous-valued response vari-
ables. Recently, several matrix factorization methods [15,
17, 18, 23] have been proposed for collaborative filtering.
These methods all focus on fitting the user-item rating ma-
trix using low-rank approximations, and use it to make fur-
ther predictions. The premise behind a low-dimensional fac-
tor model is that there is only a small number of factors
influencing preferences, and that a user’s preference vector
is determined by how each factor applies to that user.

All the above methods for recommender systems are based
on the assumption that users are independent and identically
distributed, and ignores the social activities between users,
which is not consistent with the reality that we normally ask
friends for recommendations. Based on this intuition, many
researchers have recently started to analyze trust-based rec-
ommender systems. In [14], a trust-aware collaborative fil-
tering method for recommender systems is proposed. In
this work, the collaborative filtering process is informed by
the reputation of users which is computed by propagating
trust. Trust values are computed in addition to similarity
measures between users. The experiments on a large real
dataset shows that this work increases the coverage (num-
ber of ratings that are predictable) while not reducing the
accuracy (the error of predictions). Bedi et al. in [1] pro-
posed a trust-based recommender system for the Semantic
Web; this system runs on a server with the knowledge dis-
tributed over the network in the form of ontologies, and uses
the Web of trust to generate the recommendations. These
methods are all memory-based methods which employ only
heuristic algorithms to generate recommendations. There
are several problems with this approach, however. The rela-
tionship between the trust network and the user-item matrix
have not been studied systematically. Moreover, these meth-
ods are not scalable to very large datasets since they may
need to calculate the pairwise user similarities and pairwise
user trust scores.

In this paper, by conducting latent factor analysis using
probabilistic matrix factorization, we learn the user latent
feature space and item latent feature space by employing a
user social network and a user-item matrix simultaneously
and seamlessly. Although recently, similar factor analysis
methods have been employed in [27, 28] for document re-
trieval and document classification, our approach has three
essential differences compared with these methods: (1) Our
method can deal with missing value problem, while their
methods cannot. (2) Our method is interpreted using a
probabilistic factor analysis model. (3) Complexity analysis
shows that our method is more efficient than their methods
and can be applied to very large datasets.
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Figure 1: Example for Toy Data

3. SOCIAL RECOMMENDATION
FRAMEWORK

In this section, we first demonstrate our social recommen-
dation framework using a simple but illustrative toy exam-
ple. Then we introduce the factor analysis method for social
recommendation using probabilistic matrix factorization.

3.1 Toy Example

Let us first consider the typical social network graph in
Fig. 1(a). There are 6 users in total (nodes, from w1 to ue)
with 8 relations (edges) between users in this graph, and
each relation is associated with a weight w;; in the range
[0, 1] to specify how much user u; knows or trusts user u;.
In an online social network Web site, the weight w;; is often
explicitly stated by user u;. As illustrated in Fig. 1(b), each
user also rates some items (from ¢; to ig) on a 5-point in-
teger scale to express the extent of favor of each item. The
problem we study in this paper is how to predict the miss-
ing values of the user-item matrix effectively and efficiently
by employing two different data sources. As mentioned in
Section 1, motivated by the intuition that a user’s social
connections will affect this user’s behaviors on the Web, we
therefore factorize the social network graph and user-item
matrix simultaneously and seamlessly using U? Z and UTV,
where the shared low-dimensional matrix U denotes the user
latent feature space, Z is the factor matrix in the social net-
work graph, and V represents the low-dimensional item la-
tent feature space. If we use 5 dimensions to perform the
matrix factorization for social recommendation, we obtain

1.551.22 0.37 0.81 0.62 —0.01
0.36 0.91 1.21 0.39 1.10 0.25

U=059020 014 0.83 027 1.51 |,
0.39 1.33 —0.43 0.70 —0.90 0.68
1.050.11 0.17 1.18 1.81 0.40
1.00 —0.05 —0.24 0.26 1.28 0.54 —0.31 0.52
0.19 —0.86 —0.72 0.05 0.68 0.02 —0.61 0.70
V=1049 0.09 —0.05-0.620.12 0.08 0.02 1.60]| ,

—0.40 0.70 0.27 —0.27 0.99 0.44 0.39 0.74
1.49 —1.00 0.06 0.05 0.23 0.01 —0.36 0.80

where U; and Vj are the column vectors and denote the la-
tent feature vectors of user u; and item vy, respectively. Note
that the solutions of U and V' are not unique. Then we can
predict the missing value w;; in Fig. 1(b) using U7 V; (be-
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fore prediction, we need to first transfer the value of U V;
using logistic function g(z) and another mapping function
f(x), which will be introduced in Section 3.2 and Section 3.3
respectively). Therefore, all the missing values can be pre-
dicted using 5-dimensional matrices U and V, as shown in
Fig. 1(c). Note that even though user us does not rate any
items, our approach still can predict reasonable ratings.

Since this example is a toy example, we cannot evaluate
the accuracy of the prediction. However, the experimental
analysis in Section 4 based on Epinions dataset tests the
effectiveness of our approach. In the following sections, we
will present the details of how we conduct factor analysis for
social recommendation using probabilistic matrix factoriza-
tion.

3.2 Social Network Matrix Factorization

Suppose we have a directed social network graph G =
(V, &), where the vertex set V = {v; }i~; represents all the
users in a social network and the edge set £ represents the
relations between users. Let C' = {c;i} denote the m x m
matrix of G, which is also called the social network matrix in
this paper. For a pair of vertices, v; and vg, let ¢;x € (0, 1]
denote the weight associated with an edge from v; to wy,
and c¢;x = 0, otherwise. The physical meaning of the weight
¢k can be interpreted as how much a user 7 trusts or knows
user k in a social network. Note that C' is an asymmetric
matrix, since in a social network, especially in a trust-based
social network, user ¢ trusting k does not necessary indicate
user k trusts <.

The idea of social network matrix factorization is to de-
rive a high-quality [-dimensional feature representation U of
users based on analyzing the social network graph G. Let
U € R*™ and Z € R™™ be the latent user and factor
feature matrices, with column vectors U; and Zj represent-
ing user-specific and factor-specific latent feature vectors,
respectively. We define the conditional distribution over the
observed social network relationships as

p(cit Ziat) = [T TT [ (enlaw? z0.02)| . @)

i=1k=1

where N (z|u,0?) is the probability density function of the
Gaussian distribution with mean p and variance o2, and 15
is the indicator function that is equal to 1 if user 4 trusts or
knows user k and equal to 0 otherwise. The function g(z) is
the logistic function g(z) = 1/(1+exp(—z)), which makes it
possible to bound the range of U Z; within the range [0, 1].
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Figure 2: Graphical Model for Social Recommenda-
tion

We also place zero-mean spherical Gaussian priors [5, 18] on
user and factor feature vectors:

m

= [[VWilo,081),

i=1

[T~ ko, o21).

k=1

p(Ulot)

p(Zlo%) =

Hence, through a simple Bayesian inference, we have
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In online social networks, the value of c¢;x, which is mostly
explicitly stated by user ¢ with respect to user k, and it can-
not accurately describe the relations between users since it
contains noises and it ignores the graph structure informa-
tion of social network. For instance, similar to the Web link
adjacency graph in [26], in a trust-based social network, the
confidence of trust value c¢;r should be decreased if user ¢
trusts lots of users; however the confidence of trust value
¢k, should be increased if user k is trusted by lots of users.
Hence, we employ the term ¢;;, which incorporates local au-
thority and local hub values as a substitute for ¢;, in Eq. (1),

p(C’|U7Z,J2C):f[ﬁ[ (ciulo(@T 7). 0 )]I%

d=(vk) ) X Cin,

d+ (vl) +d- (’Uk (4)

Cik =

where d* (v;) represents the outdegree of node v;, while
d™ (vx) indicates the indegree of node vy.

3.3 User-ltem Matrix Factorization

Now considering the user-item matrix, suppose we have
m users, n movies, and rating values within the range [0, 1].
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Actually, most recommender systems use integer rating val-
ues from 1 to Rpas to represent the users’ judgements on
items. In this paper, without loss of generality, we map the
ratings 1, ..., Rmaee to the interval [0, 1] using the function
f(z) = (£ — 1)/(Rmaz — 1). Let 7i; represent the rating of
user 4 for movie j, and U € R>*™ and V € R™" be la-
tent user and movie feature matrices, with column vectors
U; and Vj representing user-specific and movie-specific la-
tent feature vectors respectively. We define the conditional
distribution over the observed ratings as

R

mwmw%:ﬁﬁ[(WMUV>)rﬂ (%)

where Ifj- is the indicator function that is equal to 1 if user @
rated movie j and equal to 0 otherwise. We also place zero-
mean spherical Gaussian priors on user and movie feature
vectors:

p(Ulot) = [[NV(Wil0, 03 1),
i=1

p(Vloh) = [[ N(V;]0, 07 T). (6)
j=1

Hence, similar to Eq. (3), through a Bayesian inference, we
have

p(U, VIR, 0%, 00, 0v)
p(R|U,V,o2)p(Ulot)p(V|oP)

TTIT [ (ralo?viy.o3)]

i=1j5=1
< J[N@Wil0,05T) x T N (V510,63 1).

i=1 j=1

o

(7)

3.4 Matrix Factorization for Social
Recommendation

As analyzed in Section 1, in order to reflect the phe-
nomenon that a user’s social connections will affect this
user’s judgement of interest in items, we model the prob-
lem of social recommendation using the graphical model de-
scribed in Fig. 2, which fuses both the social network graph
and the user-item rating matrix into a consistent and com-
pact feature representation. Based on Fig. 2, the log of the
posterior distribution for social recommendation is given by

lnp(av ZIC R o—éa%aémimé) =

2UR 2 ]Zl TU a U V ))
2% X;kzlf w(ch — (U Z1))?

1 m 1 n m
202 ZTUl B 2— Z o2 Z 2k Zx
i=1 j=1 Z =1
((i i ) Ino? + (Z 15 1nozc>

=1 j=1 i=1 k=1

_% (mllnofr + nilnoy, + milnoy) +C,
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where C is a constant that does not depend on the parame-
ters. Maximizing the log-posterior over three latent features
with hyperparameters (i.e. the observation noise variance
and prior variances) kept fixed is equivalent to minimizing
the following sum-of-squared-errors objective functions with
quadratic regularization terms:

L(RCUVZ):

QZZ [ (rij—g (Ul V;)) ™+ ZZL (ci—a(U Zi))*

=1 j=1 i=1 k=1

Ac

2201 + VIR + 22213, (9)
where A\c = o%/08, \v = 0&/ot, \v = oR/oy, Az =
o%/0%, and || - ||% denotes the Frobenius norm. A local
minimum of the objective function given by Eq.(9) can be
found by performing gradient descent in U;, V; and Zj,

a[: n
o = fo’;g’(U? Vi) (g(UVy) —1i;)V;
- )\szzkg UL Z0)(g(U Ze) = i) 2 + AU,
oL -
J i=1
8[, T T *
Zr /\szzkg U Z4)(g(U! Zi) = cix)Us + Az Zy,(10)

where ¢'(x) is the derivative of logistic function g¢'(x)
exp(x)/(1 + exp(z))®. In order to reduce the model com-
plexity, in all of the experiments we conduct in Section 4,
we set Ay = A\v = \z.

3.5 Complexity Analysis

The main computation of gradient methods is evaluating
the object function £ and its gradients against variables.
Because of the sparsity of matrices R and C, the compu-
tational complexity of evaluating the object function L is
O(prl+ pcl), where pr and pc are the numbers of nonzero
entries in matrices R and C, respectively. The computa-
tional complexities for gradients 25, 2% and g—é in Eq. (10)

U v
are O(prl + pcl), O(prl) and O(pcl), respectively. There-
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Table 1: Statistics of User-Item Rating Matrix of Epinions

| Statistics | User | Item |
Min. Num. of Rated 1 1
Max. Num. of Rated | 1022 | 2018
Avg. Num. of Rated | 16.55 | 4.76

fore, the total computational complexity in one iteration is
O(prl + pcl), which indicates that the computational time
of our method is linear with respect to the number of obser-
vations in the two sparse matrices. This complexity analysis
shows that our proposed approach is very efficient and can
scale to very large datasets.

4. EXPERIMENTAL ANALYSIS

In this section, we conduct several experiments to compare
the recommendation quality of our social recommendation
approach with other state-of-the-art collaborative filtering
methods. Our experiments are intended to address as the
following questions:

1. How does our approach compare with the published
state-of-the-art collaborative filtering algorithms?

2. How does the model parameter Ac affect the accuracy
of prediction?

3. What is the performance comparison on users with
different observed ratings?

4. Can our algorithm achieve good performance even if
users have no observed ratings?

5. Is our algorithm efficient for large datasets?

In the following, Section 4.3 gives answers to question 1,
Section 4.4 addresses question 2, Section 4.5 describes exper-
iments for questions 3 and 4, and lastly, Section 4.6 shows
the analysis of question 5.

4.1 Description of the Epinions Dataset

A tremendous amount of data has been produced on the
Internet every day over the past decade. Millions of people
influence each other implicitly or explicitly through online



Table 2: MAE comparison with other approaches (A smaller MAE value means a better performance)

Training Data

Dimensionality = 5

Dimensionality = 10

MMMF | PMF | CPMF | SoRec

MMMF | PMF | CPMF | SoRec

99% 1.0008 [ 0.9971 | 0.9842 | 0.9018 || 0.9916 | 0.9885 | 0.9746 | 0.8932
80% 1.0371 | 1.0277 | 0.9998 | 0.9321 1.0275 | 1.0182 | 0.9923 | 0.9240
50% 1.1147 [ 1.0972 | 1.0747 | 0.9838 1.1012 | 1.0857 | 1.0632 | 0.9751
20% 1.2532 [ 1.2397 | 1.1981 | 1.1069 1.2413 | 1.2276 | 1.1864 | 1.0944

social network services, such as Facebook®. As a result,
there are many online opportunities to mine social networks
for the purposes of social recommendations.

We choose Epinions as the data source for our experiments
on social recommendation. Epinions.com is a well known
knowledge sharing site and review site that was established
in 1999. In order to add reviews, users (contributors) need
to register for free and begin submitting their own personal
opinions on topics such as products, companies, movies, or
reviews issued by other users. Users can also assign prod-
ucts or reviews integer ratings from 1 to 5. These ratings
and reviews will influence future customers when they are
deciding whether a product is worth buying or a movie is
worth watching. Every member of Epinions maintains a
“trust” list which presents a network of trust relationships
between users, and a “block (distrust)” list which presents
a network of distrust relationships. This network is called
the “Web of trust”, and is used by Epinions to re-order the
product reviews such that a user first sees reviews by users
that they trust. Epinions is thus an ideal source for exper-
iments on social recommendation. Note that in this paper,
we only employ trust statements between users while ignor-
ing the distrust statements, for the following two reasons:
(1) The distrust list of each user is kept private in Epin-
ions.com in order to protect the privacies of users, hence it
is not available in our dataset. (2) As presented in [6], the
understanding of distrust is more complicated than trust,
which indicates that the user trust latent feature space may
not be the same as the user distrust latent feature space.
The study of distrust-based social recommendation will be
conducted in future work.

The dataset used in our experiments consists of 40,163
users who have rated at least one of a total of 139,529 dif-
ferent items. The total number of reviews is 664,824. The
density of the user-item matrix is

664824
40163 x 139529

We can observe that the user-item matrix of Epinions is
relatively very sparse, since the densities for the two most fa-
mous collaborative filtering datasets Movielens® (6,040 users,
3,900 movies and 1,000,209 ratings) and Eachmovie” (74,424
users, 1,648 movies and 2,811,983 ratings) are 4.25% and
2.29%, respectively. In particular, in the Movielens dataset
all the users are guaranteed to have voted on at least 20
items, while in our Epinions dataset, 18,826 users, repre-
senting 46.87% of the population, submitted fewer than or
equal to 5 reviews. Moreover, an important reason that we
choose the Epinions dataset is that user social network in-

= 0.01186%.

http://www.facebook.com
Shttp://www.cs.umn.edu/Research/CroupLens.

"http://www.research.digital.com/SRC/EachMovie.
now retired by Hewlett-Packard (HP).

It is
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formation is not included in the Movielens and Eachmovie
datasets. The statistics of the Epinions user-item rating ma-
trix are summarized in Table 1.

As to the user social network, the total number of issued
trust statements is 487,183. The indegree and outdegree dis-
tributions of this social network fit with a power-law distri-
bution, as has been found in many social networks. The de-
gree distributions of the Epinions social network are shown
in Fig. 3.

4.2 Metrics

We use the Mean Absolute Error (MAE) metrics to mea-
sure the prediction quality of our proposed approach in com-
parison with other collaborative filtering methods. MAE is
defined as:

Zi,j |rig — Tl (11)
N )

where 7; ; denotes the rating user i gave to item j, 75 ; de-
notes the rating user 7 gave to item j as predicted by our
approach, and N denotes the number of tested ratings.

4.3 Comparison

In this section, in order to show the performance improve-
ment of our Social Recommendation (SoRec) algorithm, we
compare our algorithm with some state-of-the-art algorithms:
Maximum Margin Matrix Factorization (MMMF) [15], Prob-
abilistic Matrix Factorization (PMF) [18], and Constrained
Probabilistic Matrix Factorization (CPMF) [18].

We use different amounts of training data (99%, 80%,
50%, 20%) to test all the algorithms. Training data 99%,
for example, means we randomly select 99% of the ratings
from Epinions dataset as the training data to predict the
remaining 1% of ratings. The random selection was car-
ried out 5 times independently. The experimental results
are shown in Table 2. The parameter settings of our ap-
proach are A\c¢ = 10, Ay = Av = Az = 0.001, and in all
the experiments conducted in the following sections, we set
all of the parameters Ay, Av and Az equal to 0.001. From
Table 2, we can observe that our approach outperforms the
other methods. On average, our approach improves the ac-
curacy by 11.01%, 9.98%, and 7.82% relative to MMMF,
PMF and CPMF, respectively. The improvements are sig-
nificant, which shows the promising future of our social rec-
ommendation approach.

4.4 Impact of Parameter

The main advantage of our social recommendation ap-
proach is that it incorporates the social network informa-
tion, which helps predict users’ preferences. In our model,
parameter A¢c balances the information from the user-item
rating matrix and the user social network. If A\¢ = 0, we
only mine the user-item rating matrix for matrix factoriza-
tion, and if A¢ = inf, we only extract information from the
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Figure 4: Impact of Parameter \c

social network to predict users’ preferences. In other cases,
we fuse information from the user-item rating matrix and
the user social network for probabilistic matrix factorization
and, furthermore, to predict ratings for active users.

Fig. 4 shows the impacts of A\c on MAE. We observe that
the value of A\¢ impacts the recommendation results signif-
icantly, which demonstrates that fusing the user-item rat-
ing matrix with the user social network greatly improves
the recommendation accuracy. As A¢ increases, the predic-
tion accuracy also increases at first, but when A¢ surpasses
a certain threshold, the prediction accuracy decrease with
further increase of the value of A\¢. This phenomenon co-
incides with the intuition that purely using the user-item
rating matrix or purely using the user social network cannot
generate better performance than fusing these two resources
together. From Fig. 4, no matter using 5-dimension or 10-
dimension representation, we observe that for this Epinions
dataset, our social recommendation method achieves the
best performance when Ac € [10,20], while smaller values
like A\c = 0.1 or larger values A\c = 100 can potentially de-
grade the model performance. Moreover, the insensitivity
of the optimal value of Ac shows that the parameter of our
model is easy to train.

45 Performance on Different Users

One main task we target in this paper is to provide accu-
rate recommendations when users only supply a few ratings
or even have no rating records. Although previous work al-
ways notices this critical problem, few approaches perform
well when few user ratings are given. Hence, in order to
compare our approach with the other methods thoroughly,
we first group all the users based on the number of observed
ratings in the training data, and then evaluate prediction ac-
curacies of different user groups. The experimental results
are shown in Fig. 5. Users are grouped into 10 classes: “= 0",
“1 _ 5777 “6 _ 1()777 “11 _ 20777 “21 _ 4()777 “41 _ 80777 “81 _ 16()777
“160 — 3207, “320 — 6407, and “> 640", denoting how many
ratings users have rated.

Fig. 5(b), Fig. 5(d), Fig. 5(f) and Fig. 5(h) summarize
the distributions of testing data according to groups in the
training data. For an example, in Fig. 5(d), there are a to-
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tal of 1,089 user-item pairs needing to be predicted in the
testing dataset in which the related users in the training
dataset have no rating records (“= 0”). Actually, Fig. 5(f)
does not have the label “> 640” since no user has rated
more than 640 items; Fig. 5(h) does not have the labels
“320 — 640” and “> 640” for the same reason. In Fig. 5(a),
Fig. 5(c), Fig. 5(e), and Fig. 5(g) we observe that our al-
gorithm generally performs better than other methods, es-
pecially when few user ratings are given. When users have
no rating records (“= 0”), our method performs much bet-
ter than MMMF, PMF and CPMF, and increase the perfor-
mance more than 36.75%, 40.82%, and 41.75%, respectively.
Although as the number of users’ observed ratings increases,
the performances of all the algorithms converge, our model
still generates better predictions than the other methods at
all level.

4.6 Efficiency Analysis

The complexity analysis in Section 3.5 states that the
computational complexity of our approach is linear with re-
spect to the number of ratings, which proves that our ap-
proach is scalable to very large datasets. Actually, our ap-
proach is very efficient even when using a very simple gra-
dient descent method. In the experiments using 99% of the
data as training data, each iteration only needs less than
1 second. Also, as shown in Fig. 6, when using 99% of
the data as training data (Fig. 6(a)), our method needs less
than 1,200 iterations to converge, which only needs approxi-
mately 18 minutes. When using 20% of the data as training
data (Fig. 6(d)), we only need less than 5 minutes to train
the model. All the experiments are conducted on a normal
personal computer containing an Intel Pentium D CPU (3.0
GHz, Dual Core) and 1 Giga byte memory.

From Fig. 6, we also observe that when using a small
value of Ac, such as Ac¢ = 0.1 or A\c¢ = 1, after 200 to
300 iterations, the model begins to overfit, while a larger
Ac, such as A¢ = 10, does not have the overfitting problem.
These experiments clearly demonstrate that in this Epinions
dataset, using little social network information can cause
overfitting problem, and that the predictive accuracy can be
improved by incorporating more social network information.
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5. CONCLUSIONS AND FUTURE WORK

In this paper, based on the intuition that a user’s so-
cial network will affect this user’s behaviors on the Web,
we present a novel social recommendation framework fusing
a user-item rating matrix with the user’s social network us-
ing probabilistic matrix factorization. The experimental re-
sults show that our approach outperforms the other state-of-
the-art collaborative filtering algorithms, and the complex-
ity analysis indicates it is scalable to very large datasets.
Moreover, the data fusion method using probabilistic ma-
trix factorization we introduce in this paper is not only ap-
plicable to social recommendation, but also can be applied
to other popular research topics, such as social search and
many other tasks in information retrieval and data mining.

In this paper, we employ the inner product of two vec-
tors to fit the observed data; this approach assumes that
the observed data is a linear combination of several latent
factors. Although we use the logistic function to constrain
the inner product, a more natural and accurate extension
for this assumption is to use a kernel representation for the
two low-dimensional vectors, such as a Gaussian Kernel or
a Polynomial Kernel, which map the the relations of two
vectors into a nonlinear space, and thus would lead to an
increase in the model’s performance.

We only use inter-user trust information in this paper,
but in many online social networks, the distrust information
is also stated by many users. Because a user trust feature
space may not be consistent with the corresponding user dis-
trust feature space, we cannot simply incorporate the dis-
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trust information into our model. In the future, we need to
investigate the following two problems: whether the distrust
information is useful to increase the prediction quality, and
how to incorporate it.

When fusing the social network information, we ignore
the information diffusion or propagation between users. A
more accurate approach is to consider the diffusion process
between users. Hence, we need to replace the social net-
work matrix factorization with the social network diffusion
processes. This consideration will help alleviate the data
sparsity problem and will potentially increase the prediction
accuracy.
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